Michael Hiebel

Fundamentals of Vector Network Analysis

Table of contents

1	Introduction	12
1.1	What is a network analyzer?	12
1.2	Wave quantities and S-parameters	13
1.3	Why vector network analysis?	10
1.4	A circuit example	18
2	Design of a heterodyne N-port network analyzer	22
2.1	Block diagram	22
2.2	Design of the test set	23
2.2.1	Constancy of the a wave	24
2.2.2	Reflection tracking	25
2.2.3	Directivity	26
2.2.4	Test port match and multiple reflections	29
2.2.5	Summary	30
2.2.6	Outlook	32
2.3	Implementation of the directional element	33
2.3.1	VSWR bridge	34
2.3.2	Directional coupler	36
2.3.3	Other implementations	42
2.4	Other components of the test set	42
2.4.1	Receiver step attenuators	42
2.4.2	Generator attenuators	46
2.4.3	Active and passive test sets	48
2.5	Generator	49
2.6	Reference and measurement receiver	50
2.7	Measurement procedure	54
2.7.1	S-parameter measurement procedure	54

FUNDAMENTALS OF VECTOR NETWORK ANALYSIS	CUNDAMENTALS	OF VECTOR	Network	ANALYSIS
---	--------------	-----------	---------	----------

2.7.2	Measurement data processing chain	55
2.7.3	Trace generation	57
2.8	Main setting parameters	57
2.8.1	User interface	57
2.8.2	Channel settings	60
2.8.3	Trace settings	63
2.9	Remote control of the instrument	70
2.9.1	Usage of simple digital signals	70
2.9.2	Protocol-based interfaces	70
2.9.3	Automation	73
2.10	Simplified implementations	76
2.10.1	N+1 receiver analyzer	77
2.10.2	Network analyzer with an N-port switching matrix	78
3	Measurement accuracy and calibration	80
3.1	Reduction of random measurement errors	81
3.1.1	Thermal drift	81
3.1.2	Repeatability	81
3.1.3	Noise	84
3.2	Correction of systematic measurement errors	86
3.2.1	Nonlinear influences	86
3.2.2	Linear influences	87
3.3	Calibration standards	89
3.3.1	Coaxial calibration standards	91
3.3.2	Waveguide calibration standards	99
3.3.3	Microstrip calibration standards	102
3.3.4	Coplanar calibration standards	105
3.3.5	The uniform model of the calibration standards	109
3.4	Linear error models and calibration techniques	110
3.4.1	3-term error model (OSM technique)	111
3.4.2	7-term error model (TOM, TRM, TRL, TNA,	
	UOSM techniques)	113
3.4.3	10-term and 12-term error models (TOSM technique)	119

Т	ΔΙ	R I	ı.	E	n	E	c	Λ	N	т	r	N.	TS	

3.4.4	15-term error model (TOM-X technique)	123
3.4.5	Adapters and noninsertable DUTs	124
3.4.6	Incomplete calibration techniques	127
3.4.7	Practical hints for calibration	129
3.5	Verification	132
3.5.1	T-check and Beatty standard	133
3.5.2	Measurement of the effective system data	136
3.5.3	A primer to statistics	143
3.5.4	Analysis of the measurement uncertainty	146
3.6	Traceability	151
3.6.1	The International System of Units	151
3.6.2	The pseudo units dB and dBm	153
3.6.3	Some important non-SI units	154
3.6.4	An organization for traceability	155
3.6.5	Traceability of a network analyzer	156
4	Linear measurements	157
4.1	Performing a TOM calibration	157
4.2	Performing a TNA calibration	160
4.3	Measurement of the reflection coefficient and the SWR	162
4.4	Measurement of the transmission coefficient	167
4.5	Measurement of the group delay	169
4.6	Measurement of the phase delay, auto length	173
4.7	Measurement of the stability	175
4.8	Measurement with embedding	178
4.9	Measurement with deembedding	183
4.10	Measurement of balanced lines	188

.11	Measurement of the far-end and near-end crosstalk	192
i.12	Filter with balanced and unbalanced port, imbalance and common-mode rejection	196
1.13	Measurement of switching times and drift effects	201
4.14	Measurements on amplifiers in pulsed operating mode	208
4.15	Measurement of the efficiency	210
5	Time-domain measurements	214
5.1	Time-domain analysis	214
5.1.1	Impulse and step response	215
5.1.2	Time-domain analysis of linear RF networks	217
5.1.3	Time domain reflectometry using an oscilloscope	217
5.1.4	Fourier transform	224
5.2	Numerical inverse Fourier transform	226
5.2.1	Inverse discrete Fourier transform	227
5.2.2	Windowing	234
5.2.3	Bandpass mode	240
5.2.4	Transformations optimized for computing time	244
5.3	Using the time-domain option	244
5.3.1	Operation in lowpass mode	245
5.3.2	Operation in bandpass mode	249
5.3.3	Benefits of extrapolation	250
5.3.4	Processing sequence	252
5.4	Time gate	253
5.5	Tables and diagrams	257
5.5.1	Impulse and step responses for important reflection	
	coefficients	25
5.5.2	Comparison of important window functions	264
5.5.3	Comparison of important time gates	26
5.5.4	Diagram for determination of the ambiguity range	26

τ	٠, ١	ı cı	2	o r	co	NIT	ENT	,

6	Examples of time-domain measurements	268
6.1	Distance-to-fault measurement and gating	268
6.2	Measurements on a SAW filter in the time domain	274
6.3	RF imaging for nondestructive evaluation	280
6.4	Measurement of the complex effective system data and OSML calibration	283
7	Nonlinear measurements	288
7.1	Features used for nonlinear measurements	288
7.1.1	Automatic level control	288
7.1.2	Source power calibration	291
7.1.3	Receiver power calibration	293
7.1.4	Power sweep	294
7.1.5	Multiple source concept	295
7.1.6	Arbitrary mode	296
7.1.7	Direct generator and receiver access	298
7.1.8	Power sensors as receivers	298
7.1.9	External generator control	299
7.1.10	Additional equipment	300
7.2	Measurement of the compression point	301
7.3	Measuring a detector characteristic	302
7.4	Harmonics	304
7.4.1	Model of harmonic distortions	304
7.4.2	Measurement of the harmonics and their intercept point	308
7.5	Intermodulation	315
7.5.1	Model of intermodulation distortions	315
7.5.2	Measurement of the intermodulation products and	
	their intercept point	318
76	Roosted source with an external test set	328

FUNDAMENTALS	OF V	VECTOR	NETWORK	ANALYSIS
--------------	------	--------	---------	----------

7.7	Measuring hot S-parameters	330
7.8	Load-pull measurements	332
7.9	True-differential-measurements	336
8	Mixer measurements	338
8.1	Signals and parameters for a mixer	338
8.1.1	Input and output signals of a mixer	338
8.1.2	Higher order mixing products	341
8.1.3	Important mixer parameters	342
8.2	Features for mixer measurements	346
8.2.1	Mixer measurement mode	346
8.2.2	Connection of a reference mixer	348
8.3	Example 1: Mixer measurement	348
8.4	Example 2: Measurements on a down-converting module	352
8.5	Frequency extension	354
9	Antenna and radar cross section measurements	360
9.1	Antenna measurements	361
9.2	Important antenna measurement quantities	366
9.3	Radar cross section measurements	369
10	Conclusion and acknowledgement	373

 	TABLE	0 F	CONTENTS	_

Α	Appendix	374
A 1	Mathematical principles	374
A1.1	Complex numbers	374
A1.2	Matrix operations	377
A2	Important symbols and quantities	380
А3	Circuit symbols used	385
A 4	Acronyms and abbreviations	386
A 5	Sources of figures	390
A 6	Bibliography	392
A6.1	Selected application notes	392
A6.2	Books, scientific publications and standards	393
A7	Index	398
A 8	Current network analyzer product lines	
	from Rohde & Schwarz	41 5